Computer Science 354
Assignment 5 — File Sharing Program
By Group 16

Project collaborators:

Wihan Uys (21553491) - 21553491 @sun.ac.za

Nikita Smal (20720661) - 20720661@sun.ac.za

mailto:21553491@sun.ac.za
mailto:20720661@sun.ac.za

Contents:

ST OF FIQUIES: ...ttt b ettt bbb et e e st bt bt b e nn e nen e 3
LSE OF TADIES: ...t 3
IEFOTUCTION: ...t b bbb bbb bbbt b n s 4
Features included in the SOIULION:ooiiiiiie s 4
Features not included in the SOIULION: ... e 7
EXtra featureS INCIUARM:coiviiiiiiec s 7
DESCIIPLION OF TIIESt n e 7
DeSCriPtioN OF the PrOGIaM: .. .c.viieiei ettt nr e nnen e 8
[SSUBS ENCOUNTEIEA ...ttt bbbt bbb bbbt b bbbt et b et ans 8
(@0 0] o1 F= U o o] o AU 8
EXBCULION: ...ttt bbbt bbbt e bt bbb ettt bRt b n e n e 8
0] (TP P PR 9
LD AITES . b bbbt 9
1<) €1 11T 0 ST TSSO SEP PP PSP P URPRTUPUPPPPPN 9
METNOTOIOY: ...ttt e bbbttt bttt n e 9
User connection and diSCONNECLION.c.ueirieiireiiiiieie ettt s 10
USEINAME SEIECLION ...ttt bbbttt 10

The Chat fUNCTIONANITYoviiiiie s 10
SArChING FOr A T8 . .cueii e e e es 10
Downloading different file tYPEScov i e e 10
Changing the chunk size for Sharing fileS ... 10

L E TS] SR 11
User connection and diSCONNECTION.uiviiriiiriiiee et 11
USEIMAME SEIECTION ...ttt nren e 11

The Chat fUNCTIONANITYovieiiicee e 12
SEANCHING TOF @ Tl ittt seeeree e nneas 14
Downloading different file tYPeScov o 14
Changing the chunk size for Sharing fileS ... 15

(000] 3161 11 [0] 1 HETRTTRTU TR OO TTORTRRPI 16

List of Figures:

Figure 1: Initialisation of the Server in terminal.cocooiiiiiiiii s 4
FIQUIE 2: SIGN TN POPUP. ¢ttt e ettt b e 5
Figure 3: File SNaring POPUP.cvoiiiiiie it 6
FIGUIE 42 CHENE GUIL ..ot b ettt n s 6
Figure 5: File DOWNIOAA POPUP.cuviiiiiice ettt sttt sttt sre et et neeaenne e 7
Figure 6: Server Response Results from the User Connection TeSt.ccccvvvveveieeiienie v 11
Figure 7: Server Response Results from the Username Selection TeSt.ccccevvvviveveiiiviecveseevesiene 11
Figure 8: Messages Received by the Three Connected ClIENnts.cccveveivieeiie v 13
Figure 9: Results Shown for @ SEarch fOr "1"..........ooi i 14
Figure 10: Results shown for a Search of "TeStA.LXE".ccoiiiiieiiie e 14
Figure 11: Time Taken and Packet Loss for Different Chunk Sizes.ccccoiiiiiiiiiiiiiicie 15
List of Tables:

Table 1: Client File Lists compared to the List of Files Returned from Searches.c..cccccvevevirnnene. 14
Table 2: Comparison between Original and Sent Files...........coooiiiiiiiiiiiee e 15

Table 3: Results of Varying Chunk Size of PaCKetS.ccoiveiiiiiiiiicic e 15

Introduction:

The purpose of this report was to implement a file sharing program that was able to share files in a peer-
to-peer (P2P) manner. This program was coded in python and used the library PySimpleGUI to build
the GUI.

This report will explain the features of the implemented file sharing program as well as features that
were unable to be implemented. There will also be a description of the files used in the program as well
as issues encountered while creating the program. Furthermore, the report will show the experiments
conducted to test functionality of the program and ensure the requirements were met. Finally, the report
will conclude with the results of the experiment as well as give recommendations based on the findings.

Features included in the solution:

This section described the features of the program and discussed the importance of each.

The server was only there to handle the communication between the clients and the user was unable to
interact directly with it. Figure 1, showed the server, which had the following features:

e The server displayed all information, like connections, downloads, searches, and disconnects,
in terminal.

e The server only stored the client information and distributed each client’s unique username to
all clients. No two clients had the same username, and the server prevented any duplicates.

e The server did not track or store the files shared by clients.

e All communication between clients was handled by the server, but file transfer occurs through
P2P.

e Clients first connected to the server before they could talk to each other.

S python3 server.py
[] run
[] current settings:
ip: 127.0.0.1
tcp port: 5000
name: A Python Server
password:
max clients: 32
header size: 64
encoding: utf-8
Accept settings? [y]Yes [n]No

] starting...
] waiting for connections...
] --uptime=0 seconds--

v
[] binding on 127.0.0.1:5800
[
[

Figure 1: Initialisation of the Server in terminal.

The user interacted with the program through the client user interface. The clients that connected to the
server had the following features:

1. Aclient was able to chat to all other clients through a broadcast or to a single client through a
whisper.

2. The clients could see a list of all online users.

3. Each client chose the settings of the server as well as their unique username at the start of the
program as shown in Figure 2.

4. Multiple clients could connect and disconnect without interrupting the running of the program.

5. When connecting to the server, clients chose which files they wanted to share by specifying the
folder location of the files in Figure 3.

6. Once connected to the server, the clients were able to search for a file listed by other clients by
any letter in the filename as shown in Figure 4. The server handled the search by requesting the
results from every other client.

7. If the file was found, the user could select to download the file from Figure 5 by giving the port
number and the filename.

8. The client was able to pause and resume the download at any time.

Client GUI

IP Mumber:
127.0.0.1
Port Mumber:

Usemame:

Password:
File IP:
127.0.0.1

Connect

Figure 2: Sign In Popup.

Location of Shared Files

0T] BT 'home/ nikitas mal/group-16-pro ST

Figure 3: File Sharing Popup.

Client GUI: Welcome testUser
i i Cearch ‘Online users testUser
LT I Search file... Searct New user connected
Search Results:

Online Users:
estUser

Upload/Download Progress:

N T

Figure 4: Client GUI.

Client GUI - X

Port Number:

Filename:

filename...

Download Cancel

Figure 5: File Download Popup.
Features not included in the solution:

All features listed in the specification document of the assignment where included.

Extra features included:

As an extra feature the program gave the clients the ability to chat with each other as well as the
application was implemented on a GUI.

Description of files:

The root folder included the following files:

1. server.py
a. Contained the code to run the Server.
b. The server stored the list of clients as well as the connection to each.
c. All clients connected to the server, and it handled each connection and communication.
2. client_GUl.py
a. Contained the code to run the client GUI as well as the relevant popups.
b. Each client started with the sign in popup, then the upload folder popup and then after
filling those in, the main GUI was shown.
c. Theclient GUI handled both the sending of messages to other clients through the server
as well as the displaying of incoming messages from other clients.
d. When a user wanted to download a file, the client GUI ran the download popup.
. It also displayed the progress of a download.
3. sign_in_popup.py
a. Handled the fields required to sign onto the server.
b. Returned a client dictionary with the required values.
4. upload_folder_popup.py
a. Contained the user interface to select a folder on the computer to be shared.
b. Returned the file path of the folder containing the shared files.
5. download_popup.py
a. The download popup handled the input from the user to be able to download a file.
b. Returned a dictionary of the port and filename to the client GUI.

Description of the program:

With the detailed descriptions of each file and feature mentioned above, the running of the program is
as follows.

First the server was started up and requested the user to confirm or input the settings of the server. Once
completed, the server set up the sockets and binds to the given settings. The server started the program
timer and began to listen for a new client.

At this point the client GUI started by requesting the user details and the settings of the server to connect
too. The client GUI also requested the folder location of the files to share. Thereafter, the client sent a
request to the server to connect and waited for confirmation.

The server received the client request and set up this new client on a new thread. The new client thread
checked if the client was allowed to join. If the client was allowed, then it stored the client on the server
as well as created another thread for the client listener. Otherwise, the client was rejected, and the server
continued.

If the client was allowed to connect, it received a response from the server and set up the server listener
to receive any further communication from the server on a new thread. Thereafter, the client GUI was
created, and the user could begin to use the features described above.

Each command of the program was sent using a header followed by a message ([HEADER]
[MESSAGE]) structure. The header would be identified using a ‘!’. For example, ‘!download’ was used
when a client requested a download.

Issues encountered:

This section described the issues that were encountered and how they were overcome:

1. When a user pressed a button like the pause resume, a command was needed to be sent to a
different thread to stop the packets from being sent. This had to be done using the thread event
method provided by Threading. This event was set to be true or false, therefore when the user
selected the button the event would be true to pause and this would be shared across threads
thereby, using a conditional loop, pausing the download or upload.

Compilation:
No compilation was required before execution.
Execution:

To execute the code in terminal, the following commands were used:

e 3 git clone git@git.cs.sun.ac.za:Computer-Science/rw354/2021/project-5/group-16-project-
5.git
e $cd group-16-project-5

To run the Server, the following command was run from the root folder:

e 3 python3 server.py

This started the Server in the Command Line Interface (CLI) which was used to interact with the
program.

To run the client, the following command was run from the root folder in a new terminal:

$ python3 client_GUI.py

This started the client GUI which was used to interact with the program.

Note:

Both the Server and the client GUI start with the default IP address 127.0.0.1, and the default port
number 5000. These could be changed to any IP address or port number that the user wished to use.

Libraries:

There were many libraries used to complete this program and add functionality to python. The important
libraries used for this program were:

1.
2.

5.

The socket library was used to create TCP sockets and send packets.

Threading was used to split the running of the program onto multiple threads so that separate
processes could run in parallel.

Dataclasses provides a decorator and functions for automatically adding generated special
methods such as __init__().

To make the terminal easier to navigate, Colorama was used to change the text colour of certain
words.

PySimpleGUI was used to create the GUI.

Experiments:

The purpose of the experiments was to validate whether the features described above were working
correctly. All experiments contained two or three clients connected and the program was hosted over
Hamachi. The following features were tested:

User connection and disconnection,
Username selection,

The chat functionality,

Searching for a file,

Downloading different file types, and
Changing the chunk sizes for sharing files.

These features were chosen because they were the fundamental features of the program. Without these
features the program would not be able to meet the needs of the user.

Methodology:
For each of the features above, the program was set up in the following way.

1.

Start the server and confirm the settings

User connection and disconnection
2. Connect two clients
3. Disconnect one
4. Reconnect another with the same username

The purpose of this was to ensure that client connections and disconnections were handled correctly
and do not cause the server or other clients to have errors.

Username selection
2. Connect one client with username “default”
3. Connect another with the same username
4. Connect again with a unique username

The purpose of this test was to verify that the server only accepted unique usernames, and the connection
of other clients was not interrupted.

The chat functionality
2. Connect three clients
3. Send a message a message to all clients
4. Send a message to a specific online user

This ensured that when a normal message was sent, all clients received it as well as when a whisper
was sent, only the receiver could see the message.

Searching for a file
2. Connect three clients
Select folders for all clients that contained many files that are different for each client.
Search for a letter that many filenames contain
Search for a complete filename
Search for a file type

©o 0k~ w

This test was used to determine whether the user was able to search for partial matches as well as
whether the results would be the combination of all available files from multiple users.

Downloading different file types
2. Connect two clients
3. Select different file types; png, jpeg, txt and pdf
4. Download each file
5. Open the original and the sent files to compare for any byte loss

The program may have been better at sending one file type over another therefore it was important to
test many different types. For example, the text file that was sent may be missing letters of words and
the sent png may have missing pixels, but each would have had a varying degree of packet loss
depending on their size and type. The purpose of this experiment was to determine which file types
were sent the most effectively.

Changing the chunk size for sharing files
1. Change the chunk size value that clients use to share files
a. 8192 bytes

b. 4096 bytes
c. 1024 bytes
d. 128 bytes

2. A 50 MB test file was created using $ xfs_mkfile 50m TestFile
3. Connect two clients with different usernames
4. Start a file transfer by requesting a download of the same 50MB file.
5. Compare packet loss vs. time taken for the download

Results:

The following were the results of the experiments conducted.

User connection and disconnection

Two users were successfully connected and when one disconnected, the other remained unaffected.
Furthermore, the client was able to reconnect successfully without any errors. Figure 6 shows that
multiple clients can connect and disconnect from the server without any issues.

--uptime=270 seconds--
--uptime=315 seconds--
--uptime=360 seconds--
new client [127.6.0.1] connected, setting up thread
new thread created successfully
--> [127.0.0.1] Welcome to A Python Server!
creating thread for listening to [useri1]
new client [127.0.0.1] connected, setting up thread
new thread created successfully
--> [127.0.0.1] Welcome to A Python Server!
creating thread for listening to [user2]
purging client [user2]
roadcast new clients

] --uptime=465 seconds--
new client [127.6.0.1] connected, setting up thread
new thread created successfully
--» [127.0.0.1] Welcome to A Python Server!
creating thread for listening to [user2]

oA ——

Figure 6: Server Response Results from the User Connection Test.

Username selection
The first client “user1” was able to connect as normal, but when the second client tried to connect to
the server, the server gave the output shown in Figure 7. Thereafter, the client was able to connect with
a unigue username.

] --uptime=405 seconds--
] new client [127.0.0.1] connected, setting up thread
] new thread created successfully
] --> [127.0.0.1] Welcome to A Python Server!
] creating thread for listening to [user2]
] --uptime=450 seconds--
] purging client [user2]
roadcast new clients
] new client [127.0.0.1] connected, setting up thread
] new thread created successfully
1 --> [127.0.0.1] username already in use

[
[
[
[
[
[
[
b
[
é

Figure 7: Server Response Results from the Username Selection Test.

The chat functionality

All three clients 1, 2, and 3 were connected when client 1 sent a message to everyone. This message
was received and was the same for each client. Thereafter, client 1 sent a message to client 2 and client
3 was the only client that did not see the message. The results shown in Figure 8 show that the messaging
and whisper work correctly.

Client GUI: Welcome user1

- = Online users useri
U B Search file... Se N e —

. . Online users useri user2
Search Results:

(user1) hello

D file

Upload/Download Progress: P

Client GUI: Welcome user2

CEST M Search file. .. : Online users user1 user2

Search Results:

(userl) hello

Upload/Download Progre:

e

Client GUI: Welcome user3

R0 W Search file... c Online users user1 user2 user3d

New user connected
Search Result (user1) hello

D i file

Upload/Download Progre:

Figure 8: Messages Received by the Three Connected Clients.

Searching for a file

With the three clients 1, 2, 3 connected, two searches were made. The first was for a single character
“1” and the other was for a complete file name “Test4.txt”, which are shown in Figure 9 and Figure 10,
respectively. The files shared by each client and the results of each search are shown in Table 1.

Table 1: Client File Lists compared to the List of Files Returned from Searches.

Client A Files | Client B Files Client C Files | Result For «“1” | Result For “Test4.txt”
Testl.txt Testl1.txt Test111.txt Testl.txt Test4.txt

Test2.txt Test4.txt Test6.txt Testll.txt

Test3.txt Test5.txt Test7.txt

Client GUI: Welcome client3

Online users client1 client2 client3
New user connected
Search results for: 1

Search Results:

Online Users:

file

Pause/Resume

ownload Progress:

I LTI

Client GUI: Welcome client3

Online users client! client2 client3
New user connected

Search results for: 1

Search results for: Testd.txt

ST I Testd. txt Search

Search Results:

Download file

Upload/Download Progress:

N LI

Figure 10: Results shown for a Search of "Test4.txt".

Whisper

Downloading different file types

Table 2 shows how certain files experience a different percentage of bytes loss. PDF experienced the
most bytes lost even though it wasn’t the largest file. The png, which was the largest file, experienced
the least bytes lost. This is likely due to the different file formats storing their bytes in different ways

making some easier to convert between bytes and their respective formats. It is clear that all files cannot
be treated exactly the same when converting them to bytes.

Table 2: Comparison between Original and Sent Files.

File Types Sent Size Before Sending Size After Sending % Bytes Lost

png 1453482 1450618 0.20%
jpeg 29145 28633 1.76%
txt 4675 4619 1.20%
pdf 119842 116554 2.74%

Changing the chunk size for sharing files
Table 3: Results of Varying Chunk Size of Packets.

Chunk Size Packet loss % Time taken (seconds)
8192 bytes 1.6 62

4096 bytes 0.53 124

1024 bytes 0.09 653

512 bytes 0.00 856

128 bytes 0.00 1486

From the results of this experiment shown in Table 3, it was concluded that the most efficient chunk
size for sharing files was 512 bytes, depending on the sending and receiving computer hardware. Figure
11 shows how the packet loss and speed increase with chunk size.

Time taken and packet loss for different chunk sizes

Packet Loss (%)

1000

2000

3000

4000

Chunk Size (bytes)

—@— packet loss

—@— Time Taken

Figure 11: Time Taken and Packet Loss for Different Chunk Sizes.

140

120

100

800

600

400

200
9000

1600

0

0

0

TIme Taken (seconds)

Conclusion:

The purpose of this report was to create a file sharing program. This report showed how this was done
by explaining the features of the server and client as well as features that were unable to be implemented.
There was also a description of the files used in the program as well as issues encountered while creating
the program.

Furthermore, the report used experiments to test the functionality of the program and ensure the
requirements were met. These tests showed how multiple clients were able to connect to the server and
send messages to each other. Clients were able to search for files on other clients’ computers without
knowing the exact filename as well as download them. The tested download formats were txt, jpeg, png
and PDF which were all successful. It was found that the number of bytes lost was not due to the file
size but rather the file format. This means that different file formats should be treated differently.

In order to correct the errors in byte loss and optimise the program, the chunk size was varied. It was
found the larger chunk size had a faster data transfer rate, but the packet loss was more noticeable. The
smaller packet size of 512 bytes was found to have the best performance with no packet loss.

